GURUKUL INTERNATIONAL SR. SEC. SCHOOL

MODERNITY WITH TRADITION AFFILIATED TO CBSE, NEW DELHI

PERIODIC TEST 1 (APRIL, 2023)

GRADE- XII

SUBJECT - MATHEMATICS

TIME: 90 MINS

MM-40

GENERAL INSTRUCTION

- This question paper consists of 20 questions.
- All questions are compulsory. However internal choice is provided in some questions. A student is expected to attempt only one of these questions.
- Section A consists of 10 questions carrying 1 mark each
- Section B consist of 5 questions carrying 2 marks each.
- Section C consists of 2 questions carrying 3 marks each.
- Section D contains 1 question of case study consist of 4 marks
- Section E consists of 2 question carrying 5 marks each.

SECTION-A

 $(10 \times 1 = 10)$

Q1. Determine whether each of the following relations are reflexive, symmetric and transitive: R: { (x, y) : x is father of y }

Q2. Find the principal values of the following: $\sin^{-1}\left(\frac{-1}{2}\right)$

Q3. Find the value of; $\cos^{-1}\left(\frac{\cos 7\pi}{6}\right)$

Q4. What is the value of $\tan^{-1} x + \tan^{-1} y$

Q5. What is the number of all possible matrices of order 3×3 with each entry 0 or 1 is

Q6. Find the values of x, y, z from the following equation:

 $\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}$

Q7. Let A=
$$\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
 B = $\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$

Find the following:

A + B

Q8. Find the transpose of the following matrices:

$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}'$$

Q9. What is the range of $\sin^{-1} x$.

Q10. In the matrix $A = \begin{bmatrix} 3 & -1 & 0 \\ 2 & 4 & 1 \\ 4 & 3 & -1 \end{bmatrix}$ What is

(i) The order of the matrix (ii) The number of elements.

SECTION- B (2×5=10)

Q11 Determine whether each of the following relations are reflexive, symmetric and transitive:

$$'R = \{(x, y : 3x - y = 0\}$$

Q12. Find the values of the following:

$$\tan^{-1}1 + \cos^{-1}\frac{-1}{2} + \sin^{-1}\frac{-1}{2}$$

Q13. Let A = $\{1, 2, 3\}$, B = $\{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one- one.

Q14. Find the value of x, y, z from the following equations:

$$\begin{bmatrix} x + y & 2 \\ 5 + z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$$
Q15. If A =
$$\begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$$
 And B =
$$\begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$$
, Then verify that

(A+B)' = A' + B'

SECTION - C (3×2=6)
Q16. If
$$\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x-2} = \frac{\pi}{4}$$
, Then find the value of x.
Q17. If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ And $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, Find k so that $A^2 = kA - 2I$
OR

Q17. Using elementary transformations, find the inverse of each of the matrices, if it exists

 $(i) \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

SECTION – D (CASE STUDY QUESTION) $(4 \times 1=4)$

Q18. In a city there are two factories A and B. Each factory produces sports clothes for boys and girls . There are 3 types of clothes produced in both factories, type I, II, III. For boys the number of units of type I, II , III are 80, 70, 65 in factory A and 85, 65, and 72 in factory B. For girls the number of units of type I, II, III respectively are 80, 75, 90 in a factory A and 50, 55, 80 in factory B.

Based on above information, answer the following question.

(i) If P represent the matrix of number of units of each type produced by the factory A for both boys and girls, then P is given by

(a) [85 65 72	50] 55 80]		(b) $\begin{bmatrix} 50 \\ 65 \end{bmatrix}$	55 65	80] 72]
(c)[[⁸⁰ 80	75 70	90] 65]	(d) [80 70 65	80 75 90	

(ii) If Q represent the matrix of number of units of each type produced by the factory B for both boys and girls, then Q is given by

(a)	[85 65 72	50 55 80		(b)	50 85	55 65	80 72
(c)	80 80	75 70	90] 65]	(d)	[80 70 65	80 75 90	

(iii) The total production of sports clothes of each type for boys is given by the matrix

(a)[165	130	137]	(b)[130	165	137]
(c)[165	135	137]	((d) [137	135	167]

(iv)The total produced of sports clothes of each type for girls is given by the matrix

(a)[130 130 170] (b) [130 165 137]

(c) [130 170 130] (d) None of these

SECTION- E $(5 \times 2 = 10)$

Q19. Find the value of each of the following:

(i)
$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right]$$

 $\sin^{-1} x = \sin^{-1} (3x - 4x^3)$

Q20. Show that the Signum Function f: $R \rightarrow R$, is given by

F (x)=
$$\begin{cases} 1, if x > 0 \\ 0, if x = 0 \\ 1, if x < 0 \end{cases}$$

Is neither one-one nor onto.