PERIODIC TEST 1 (APRIL, 2023)
 GRADE- XII
 SUBJECT - MATHEMATICS

TIME: 90 MINS

GENERAL INSTRUCTION

- This question paper consists of 20 questions.
- All questions are compulsory. However internal choice is provided in some questions. A student is expected to attempt only one of these questions.
- Section A consists of 10 questions carrying 1 mark each
- Section B consist of 5 questions carrying 2 marks each.
- Section C consists of 2 questions carrying 3 marks each.
- Section D contains 1 question of case study consist of 4 marks
- Section E consists of 2 question carrying 5 marks each.

SECTION-A

($10 \times 1=10)$
Q1. Determine whether each of the following relations are reflexive, symmetric and transitive:
$R:\{(x, y): x$ is father of $y\}$
Q2. Find the principal values of the following: $\sin ^{-1}\left(\frac{-1}{2}\right)$
Q3. Find the value of; $\cos ^{-1}\left(\frac{\cos 7 \pi}{6}\right)$
Q4. What is the value of $\tan ^{-1} x+\tan ^{-1} y$

Q5. What is the number of all possible matrices of order 3×3 with each entry 0 or 1 is

Q6. Find the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ from the following equation:

$$
\left[\begin{array}{ll}
4 & 3 \\
x & 5
\end{array}\right]=\left[\begin{array}{ll}
y & z \\
1 & 5
\end{array}\right]
$$

Q7. Let $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$
Find the following:
A + B

Q8. Find the transpose of the following matrices:

$$
\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right]
$$

Q9. What is the range of $\sin ^{-1} x$.
Q10. In the matrix $A=\left[\begin{array}{ccc}3 & -1 & 0 \\ 2 & 4 & 1 \\ 4 & 3 & -1\end{array}\right]$ What is
(i) The order of the matrix (ii) The number of elements.

SECTION- B

($2 \times 5=10$)
Q11 Determine whether each of the following relations are reflexive, symmetric and transitive:

$$
{ }^{\prime} \mathrm{R}=\{(x, y: 3 x-y=0\}
$$

Q12. Find the values of the following:

$$
\tan ^{-1} 1+\cos ^{-1} \frac{-1}{2}+\sin ^{-1} \frac{-1}{2}
$$

Q13. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one- one.

Q14. Find the value of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ from the following equations:
$\left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$

Q15. If $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]$ And $B=\left[\begin{array}{ccc}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]$, Then verify that

$$
(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}
$$

SECTION - C

($3 \times 2=6$)
Q16. If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x-2}=\frac{\pi}{4}$, Then find the value of x .
Q17. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ And $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, Find k so that $A^{2}=k A-2 I$

OR

Q17. Using elementary transformations, find the inverse of each of the matrices, if it exists
(i) $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$

SECTION - D (CASE STUDY QUESTION)

($4 \times 1=4$)
Q18. In a city there are two factories A and B. Each factory produces sports clothes for boys and girls. There are 3 types of clothes produced in both factories, type I, II, III. For boys the number of units of type I, II , III are 80, 70,65 in factory A and 85,65 , and 72 in factory B. For girls the number of units of type I, II, III respectively are 80, 75, 90 in a factory A and 50,55, 80 in factory B.
Based on above information, answer the following question.
(i) If P represent the matrix of number of units of each type produced by the factory A for both boys and girls, then P is given by
(a) $\left[\begin{array}{ll}85 & 50 \\ 65 & 55 \\ 72 & 80\end{array}\right]$
(b) $\left[\begin{array}{lll}50 & 55 & 80 \\ 65 & 65 & 72\end{array}\right]$
(c) $\left[\begin{array}{lll}80 & 75 & 90 \\ 80 & 70 & 65\end{array}\right]$
(d) $\left[\begin{array}{ll}80 & 80 \\ 70 & 75 \\ 65 & 90\end{array}\right]$
(ii) If Q represent the matrix of number of units of each type produced by the factory B for both boys and girls, then Q is given by
(a) $\left[\begin{array}{ll}85 & 50 \\ 65 & 55 \\ 72 & 80\end{array}\right]$
(b) $\left[\begin{array}{lll}50 & 55 & 80 \\ 85 & 65 & 72\end{array}\right]$
(c) $\left[\begin{array}{lll}80 & 75 & 90 \\ 80 & 70 & 65\end{array}\right]$
(d) $\left[\begin{array}{ll}80 & 80 \\ 70 & 75 \\ 65 & 90\end{array}\right]$
(iii) The total production of sports clothes of each type for boys is given by the matrix
(a)[165 130137$]$
(b) $[130 \quad 165$
137]
(c) $\left[\begin{array}{lll}165 & 135 & 137\end{array}\right]$
(d) $\left[\begin{array}{lll}137 & 135 & 167\end{array}\right]$
(iv)The total produced of sports clothes of each type for girls is given by the matrix
(a) $\left[\begin{array}{lll}130 & 130 & 170\end{array}\right] \quad$ (b) $\left[\begin{array}{llll}130 & 165 & 137\end{array}\right]$
(c) $\left.\begin{array}{lll}130 & 170 & 130\end{array}\right] \quad$ (d) None of these

Q19. Find the value of each of the following:

$$
\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right]
$$

(i) $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right)$

Q20. Show that the Signum Function $f: R \rightarrow R$, is given by

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{l}
1, \text { if } \boldsymbol{x}>\mathbf{0} \\
0, \text { if } x=0 \\
1, \text { if } x<0
\end{array}\right.
$$

Is neither one-one nor onto.

